

McQuesten Airstrip 2019

LiDAR and Airphoto Data Capture and Processing

LiDAR and Air Photo Report

Our File: 2611 19372-04

Submitted To:

Highways and Public Works | Transportation Aviation Branch | W-16 T 867-455-2883 | Yukon.ca

And Yukon Geomatics

Submitted By:
McElhanney Ltd.
200-858 Beatty Street
Vancouver, BC
V6B 1C1

Tel: (604) 424 4784

Contact: Azadeh Koohzare, PhD., PEng.

September 25, 2020

Table of Contents

1.	Introduction3	
2.	Mission Plan3	
3.	Equipment4	
4.	Flight Plan5	
5 .	Data Processing6	
6.	Point Density6	
7.	Calibration7	
8.	Quality Control8	
9.	Deliverables8	
List o	f Figures and Tables	
Figure	1 Aerial survey	
Table ²	1 Flight Parameters5	

1. Introduction

McElhanney Ltd (MCSL) performed a LiDAR and aerial photography acquisition for McQuesten, shown in Figure 1.

The site was flown on September 26th, 2019. This report describes the acquisition, post-processing and quality control methodology used to produce the final elevation models.

2. Mission Plan

Project: McQuesten LiDAR and Aerial photo Project

Date: 2019-09-26

Location: McQuesten Airstrip, Yukon

Topography: low relief

Figure 1- LiDAR Survey Site

3. Equipment

McElhanney utilized the Optech Galaxy system for LiDAR Capture (Figure 2). For Product Specifications of Optech Galaxy please see

http://www.teledyneoptech.com/index.php/product/optech-altm-galaxy/

The Galaxy was mounted on Piper Navajo fixed wing Aircraft.

Figure 2 – Optech Galaxy components

On Board Camera Phase One iXU-RS1000 RGB simultaneous capture (Figure 3.)

Phase One Industrial – Cameras iXU-R\$1000 series

iXU-RS1000 series

Camera Type	iXU-RS1000				
Camera	Specifications				
Lens type	Rodenstock / Schneider-Kreuznach				
Focal length F (mm)	RS lenses: 32, 40, 50, 70, 90, 110, 150				
rocai iengtii r (iiiiii)	SK lenses: 28, 55, 80, 110, 150, 240				
FOV (across line, deg)	86.5 (28mm) - 12.9 (240mm)				
FOV (along flight line, deg)	70.3 (28mm) - 9.7 (240mm)				
Aperture	f/5.6				
Exposure principle	Leaf shutter				
Exposure (sec)	1/2000 to 1/125				
Image capture rate	1 frame every 0.6 sec				
Light Sensitivity (ISO)	50-6400				
Dynamic Range (db)	>84				
Spectral characteristics	R,G,B				
Sensor:	Specifications				
CMOS pixel size (µm)	4.6				
CMOS array (pix)	11,608 x 8,708				
Analog-to-digital-conversion (bit)	14				
Frame / Image	age Specifications				
Frame geometry	Central projection				
Image size (pixel)	11,608 x 8,708				
Image volume (MP)	100				
Color	RGB or NIR				
Typical image size (MB)	300				
Image format	Phase One RAW, TIFF, JPEG				
Operation	al Specifications				
Power Consumption	< 10W				
Dimensions (depends on lens)	97.4 x 93 x <218 mm				

Figure 3 – Phase One Camera Series

4. Flight Plan

Table 1: Flight Parameters- 2019-09-26

Strip	Start [s]	Stop [s]	PRF	Scan	Scan	Speed	Height
ID			[kHz]	Frequency	Swath	Avg	Avg [m]
				[Hz]	[deg]	[m/s]	
1	427226.7	427230.9	4.2	400	66	50	74.9
2	427242.5	427339.2	96.7	400	66	50	80.3
3	427862.3	427974.8	112.5	400	66	50	75.4
4	428091.9	428096.1	4.2	400	66	50	77.7
5	428112.4	428116.7	4.2	400	66	50	76.9
6	428384	428488.1	104.1	400	66	50	78.4
7	428686.4	428804.5	118.1	400	66	50	75.1
8	429020.6	429134.9	114.4	400	66	50	77.3
9	429360.3	429479.4	119	400	66	50	74.1
10	429699.1	429807	107.8	400	66	50	78.8
11	430031.4	430144.8	113.5	400	66	50	76.4
12	430377.6	430483.6	106	400	66	50	81.2
13	430782.7	430880.3	97.6	400	66	50	73.5
14	432200.5	432317.6	117.2	400	66	50	81.2
15	432594.3	432705.9	111.6	400	66	50	77.2
16	432961.1	433087.7	126.5	400	66	50	76.5
17	433305.5	433427.4	121.8	400	66	50	79.2
18	433679.8	433807.3	127.5	400	66	50	76.3
19	434027.9	434035	7.1	400	66	50	78.6
20	434046.6	434154.5	107.8	400	66	50	76.5
21	434409.7	434533.4	123.7	400	66	50	78.8
22	434756	434876.9	120.9	400	66	50	78.2
23	435131.1	435257.7	126.5	400	66	50	76.8
24	435485.8	435602.1	116.3	400	66	50	78.4
25	435796.6	435812.1	15.4	400	66	50	87.6

5. Data Processing

All GPS and IMU data was processed using PosPac MMS 8.4 software. The laser data was extracted using Teledyne Optech LMS software. The GPS antenna position in the airplane was calculated by post–processing the raw data at 1 second intervals for the entire flight.

We have used Precise Point Positioning (PPP) for the airborne GPS processing, and the coordinates were calculated in NAD83-CSRS.

The airborne positions were combined with the post–processed platform (aircraft) attitude information to generate a time tagged position and orientation solution.

The standard deviation of the airborne GPS solution for using KAR (Kinematics Ambiguity Resolution) was estimated to be 0.03, 0.04 and 0.05m in East, North and height directions, respectively.

The estimated values for the GPS antenna position were used with the laser ranges and platform angles to compute all the individual X, Y, and Z coordinates for each laser return in each flight line. The result is a processed point cloud containing all measured points.

6. Point Density

Bare earth point density varies with canopy closure, understory density and topographic features. Mean density of the point cloud was measured at nominal 9.39 pts/m² and the Bare earth point density was measured at nominal 4.99 pts/m².

7. Calibration

System: Optech ALTM Galaxy S/N 5060392

LiDAR Calibration flight:

Calibration Date: June 14, 2019 Location: Whitehorse, Yukon

The LiDAR system calibration was flown over calibration site. The lever arms (offset

between GPS antenna IMU and Laser Mirror), were measured as:

Lever Arms

GPS Lever arms in (m):

x: 0.28 y: -0.445 z: -1.196

IMU Lever arms in (m):

x: 0 y: 0 z: 0

There were a total number of 10 flight lines for calibration: 9 basic orthogonal lines for

LMS software analysis and 1 redundant line for better accuracy. The lines were planned

as follow:

Flight line direction: 3 lines north – south and 3 lines east – west and 1-line NW-SE

All GPS with IMU data was processed using PosPac Applanix software v.8.3. and the

laser data was extracted using LMS v.4.3 The GPS antenna position in the airplane was

calculated by post–processing the raw data at 1 second intervals for the entire flight.

The calibration values used for this project are as follows:

imu ex: 0.049404867 arcsec

imu ey: -0.062994531 arcsec

imu ez: -0.131591982 arcsec

7

8. Quality Control

The LiDAR data consistencies have been checked between the flight lines using Terrascan software. We also checked the data against ground check points and performed the following statistical analysis:

Number of check points: 3475

Average dz +0.005 m

Minimum dz -0.170 m

Maximum dz +0.180 m

Average magnitude 0.049 m Root mean square 0.065 m

Std deviation 0.065 m

Where dz is the difference between elevations from LiDAR vs ground check elevations.

9. Deliverables

Final output data is provided in NAD83CSRS UTM N8 and the elevations are based on CGVD28 HT2 geoid model. The deliverables include:

- Bare Earth & Thinned model key points in las, xyz
- Non Bare Earth in las format
- Index map
- 15 cm Orthophto
- Technical report